SHRI RAMSWAROOP MEMORIAL UNIVERSITY

End Semester Examination (2021-22)-Odd Semester

M.Tech (Structural Engineering) – I Year (I Sem)								
Course Name: Theory of Elasticity and Plasticity	Code: MCE1010/1003P							
Time: 02 Hours	Max Marks: 60							

University Roll No.															
(To be filled by the Student)															

Note: Please read instructions carefully:

- a) The question paper has 03 sections and it is compulsory to attempt all sections.
- b) All questions of Section A are compulsory; questions in Section B and C contain choice.

	ion A: Very Short Answer type Questions mpt all the questions.	BL	CLO	Marks (10)
1.	What do you understand by stress tensor?	BL3	CLO1	02
2.	Briefly discuss the concept of plain strain.	BL2	CLO2	02
3.	Differentiate between torsion and bending with the help of a	BL1	CLO3	02
	suitable example.			
4.	Write a short note on:	BL2	CLO4	02
	i) Castigliano's first theorem			
	ii) Virtual work principle			
5.	Discuss the theory of plasticity with the help of stress-strain curve	BL2	CLO3	02
	for mild steel.			
	ion B: Short Answer Type Questions mpt any 03 out of 06 questions.	BL	CLO	Marks (30)
1.	Define the term 'plain stress'. Also list the basic equations of	BL3	CLO1	10
	elasticity in case of plain stress.			
2.	Give the relations between Airy's stress function when body forces	BL2	CLO2	10
	are zero.			
3.	Determine the total strain energy of a simply supported beam of	BL5	CLO3	10
	length 5 m with cross-section of 40 mm x 60 mm and carrying a			
	concentrated load of 50 kN at centre of the span. Assume E = 2 x			
	105 N/mm2.			
4.	Enlist the physical assumptions in case of plastic theory.	BL4	CLO3	10
5.	Prove that $\phi = A(x^4 - 3x^2y^2)$ is an Airy's stress function and	BL1	CLO4	10
	examine the stress distribution represented by it.			
6.	Discuss the importance of flow curve in the theory of plasticity.	BL1	CLO4	10

	ion C: Long Answer Type Questions/Case Study mpt any 01 out of 03 questions.	BL	CLO	Marks (20)
	At a point in a stressed body, the cartesian components of stresses	BL6	CLO3	20
1.	-	DLO	CLOS	20
	are oxx = 60 MPa, oyy = 30 MPa, ozz = 30 MPa, txy = 40 MPa, tyz =			
	τzx = 0. Determine the normal and shear stress on a plane whose			
	outer normal has the direction cosines as follows:			
	$cos(n,x) = \frac{6}{11},$ $cos(n,y) = \frac{6}{11},$ $cos(n,z) = \frac{7}{11}$			
2.	A rectangular beam 70 mm wide and 100 mm thick is 1 m in	BL5	CLO4	20
	length. It carries a uniformly distributed load of 20 N/mm			
	throughout its length. Plot the variation of stresses in the beam at			
	mid-span. Also compare the results as obtained from classical			
	methods.			
3.	A cantilever beam loaded at its free end has a stress function	BL6	CLO4	20
	Φ =Axy + B xy3/6. Find the expression for vertical deflection curve.			
